
Partitioning Microservices: A Domain Engineering Approach

Munezero Immaculée Josélyne
Makerere University

Kampala, Uganda

munejosy@gmail.com

Doreen Tuheirwe-Mukasa
Makerere University

Kampala, Uganda

tdmk4jc@gmail.com

Benjamin Kanagwa
Makerere University

Kampala, Uganda

bkanagwa@gmail.com

Joseph Balikuddembe
Makerere University

Kampala, Uganda

jbalikis@gmail.com

ABSTRACT

Architecture styles in the software world continue to evolve driven

by the need to present easier and more appealing ways of designing

and building software systems to meet stakeholder needs. One of

the popular trends at the moment is microservices. Microservice

architecture is gaining the market of software development archi-

tecture due to its capability to scale. It separates independent small

services of a system to perform one business capability at a time.

However, determining the right size of business capability that

could be called a microservice is still a challenge. Current practices

of partitioning microservice rely on personal practice within indus-

try which is prone to bias by practitioners. Based on the ambiguity

of determining the optimum size of a microservice, in this paper,

we propose a conceptual methodology to partition a microservice

based on domain engineering technique. Domain engineering iden-

tifies the information needed by a microservice, services needed for

microservice functionality and provides description for workflows

in the service.We demonstrate the usage of this methodology on the

weather information dissemination domain as a confirmatory case

study. We show how to split the weather information dissemination

system sub-domain into different microservices that accomplish

the weather information dissemination business capability.

KEYWORDS

Sizing microservice, DDD pattern, weather domain

ACM Reference Format:

Munezero Immaculée Josélyne, Doreen Tuheirwe-Mukasa, Benjamin Kanagwa,

and Joseph Balikuddembe. 2018. Partitioning Microservices: A Domain En-

gineering Approach. In SEIA ’18: SEIA ’18: Symposium on Software Engi-

neering in Africa , May 27–28, 2018, Gothenburg, Sweden. ACM , 7 pages.

https://doi.org/10.1145/3195528.3195535

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEIA ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5719-7/18/05. . . $15.00
https://doi.org/10.1145/3195528.3195535

1 INTRODUCTION

Designing good software requires proper planning for understand-

ing what the software is all about and determining the best archi-

tecture the software should rely on [29]. Microservice architecture

is the new buzz word around software architecture patterns today.

Microservices provide several advantages over monolithic systems.

They include the ability to make rapid functional changes which

contributes to achieving high integrity factors such as maintain-

ability and scalability; continuous software delivery; and delivering

software into production [16, 33]. Microservices are mainly used

in the cloud to deploy large and medium applications as a set of

small independent services that can be developed, tested, deployed,

scaled, operated and upgraded independently [25]. Those services

are partitioned in the way that they can register themselves, be

discovered by other services, record their configuration, and be

generally orchestrated in their deployment and update processes

[34].

A major challenge is on how to introduce microservices and

arrive at appropriate size [22]. The question to be answered is in

establishing where component boundaries should lie [13].

Some suggestions have been proposed to this effect, including

among others, aspects on if the microservice will be a user ser-

vice, and therefore a decision made based on the tooling (with

leaning towards the usage of lightweight tools); size being deter-

mined by the number of lines of code (with recommendations of

not exceeding a couple thousand lines of code); and functionality

in terms of the microservice accomplishing specifically only one

task [33]. Authors in [22] propose partitioning services by use case.

Other strategies are to partition by verbs, nouns, or resources, and

the scaling cube [2]. According to Newman [23], independent ser-

vices should focus service boundaries on business boundaries, so as

to avoid the difficulties introduced when the service becomes too

large. He also postulates a microservice as something that could be

rewritten in two weeks, with proper alignment to team structures.

Size for a microservice is important, because the granularity

of microservices influences the quality of service (QoS). This is

because the granularity of the service is highly dependent on the

appropriateness of service tailoring [27]. Even though in microser-

vice architecture the design of small services is encouraged, too

fine-grained services cause an ineffectively high amount of interac-

tions necessary to fulfill a one request [23].

The challenges due to the ambiguity around the right size of a mi-

croservice and lack of good guidelines for designing a microservice

43

2018 ACM/IEEE Symposium on Software Engineering in Africa

Authorized licensed use limited to: Makerere University Library. Downloaded on July 20,2022 at 10:36:13 UTC from IEEE Xplore. Restrictions apply.

SEIA ’18, May 27–28, 2018, Gothenburg, Sweden Munezero et al.

in terms of scope or size, encompass how to partition a microservice

into the optimal tailored size, to ensure loose coupling, such that

the service can easily be changed to keep up with business and tech-

nical demands. That not withstanding, the microservice approach

must contend with some issues such as integration between com-

munication of applications [33], and complexities that arise from

creating a distributed system. These include testing, deployment

and increased memory consumption [22].

Domain Driven Design (DDD) provides a number of useful pat-

terns for dealing with the kind of complexity encountered in de-

signing distributed systems and with large and complex domains,

by breaking the domain into a series of bounded contexts [12]. In

general, this method has been suggested for use when designing

a microservice [26]. DDD provides a way to set a well designed

microservice in terms of choosing the appropriate boundary. In this

paper, we propose a detailed methodology that uses DDD patterns

to partition microservices, by respecting microservice architecture

design and characteristics. In addition we exemplify the proposed

methodology on the weather domain.

The rest of this paper is organized as follows; Section 2 explores

work done on microservice partitioning and the relationship of

microservices to DDD pattern. Section 3 describes our approach of

partitioning using the DDD pattern. Section 4 illustrates the use of

our result on a weather case study. Section 5 concludes the paper.

2 RELATEDWORK

Researchers continue to seek for solutions to microservice problems

particularly concerning performance, deployment, cloud comput-

ing, and the general structure of the architecture itself including the

boundary of microservices [4]. Microservices are a new research

area, and some of the research concerning the size of microservice

shows that the size of a microservice should be small and focused

on achieving one functionality [35]. In [3], the decomposition of

microservices is done by considering system requirements, security

and scalability, however these are not the only factors that should

be considered when decomposing microservices. Hassan et. al., [7]

propose an ambient granularity which is the modeling concept that

treats microservice boundaries as an adaptable first-class entity.

Some researches propose a metric policy to measure the size of a

microservice by counting the sum of resources and clients which

are responsible for interactions between microservices or exter-

nal services [5]. Therefore, decomposing an application into an

appropriate microservice is a crucial task because of the ambiguity

around how small it could be.

2.1 Partitioning Strategies

Anumber of strategies have been used by practitioners to determine

the appropriate size for a microservice, and how to partition a

microservice.

Line of code Some developers relate the size of a microservice

to the number of lines of code (LOC). They recommend that a

service should not exceed 10 to 100 LOC [30]. The idea behind

counting LOC is to keep track of the lines of code a microservice

should not exceed. Thus, fewer lines of microservice code increases

the flexibility of scaling a microservice and eases the practice of

altering or removing a microservice. However, the LOC strategy is

not appropriate because microservices are built using different tech-

nology stacks, which differ on LOC. Also, secondary services differ

on minimum LOC depending on the type of service. For example,

process services that coordinate calls between multiple tasks can

have 100 to 1000 LOC, and a data service can be implemented by

10 to approximately 100 LOC.

Deployment unit A microservice is defined as one kind of de-

velopment and deployment unit. This service is mainly exhibited in

the cloud as Infrastructure as a service (IaaS), Platform as a service

(PaaS) and Security as a service (SaaS) to deploy a large application

as a set of small services that can be deployed, tested, scaled, oper-

ated and updated independently. These services are partitioned in

the way they register themselves, are discovered by other services

and can be generally orchestrated in their deployment and update

process [34].

Business capability Business capability defines what a system

does in enabling an organization to successfully perform a unique

business activity [17]. In agile development, it is an important way

of combining data that have something in common such as func-

tionality, rather than using collections of data entities that expose

CRUD-style methods. This helps to understand the demand im-

pact on application architecture at an early stage. In literature,

microservices are built based on the need to address one business

capability, or one business functionality at a time. However, devel-

opers face a challenge in using the business capability as a boundary

for microservices; on defining which level of granularity a business

capability should fit, so that it is not too small or too large. A small

business capability leads a service to depend on other services, and

requires service orchestration, or if too large will have the impact

of turning the microservice into heavyweight SOA, with a lot of

confusion and complexity [29]. Also, if the service is too big, by

having coarse functionality, the benefits of the microservice archi-

tecture pattern, such as scalability, loose coupling and independent

deployment, will not be seen [29].

Some have experienced the challenge of not partitioning a mi-

croservice correctly in its functionality. During design, if the mi-

croservice is too fine-grained there is a need for making orchestra-

tion from within user interface layer or in API layer. Moreover it

implies doing inter-communication among services to process a sin-

gle customer request which increases the complexity in design [29].

2.2 Domain Driven Design Pattern

Domain driven design enables inflexible architectures to create a

large-scale structure across bounded contexts aimed at providing a

better understanding of the high-level concepts, which is the core

goal of microservices. Some research shows that knowing where to

draw the boundaries is the key task when designing and defining a

microservice [21].

The domain driven design (DDD) approach helps system devel-

opers to reduce the complexity of a business or of the domain by

involving domain experts in the system development process [12].

The main goal of DDD is to systematically group all requirements

in a realistic domain model and implement feasible code of that

domain model [10].

44

Authorized licensed use limited to: Makerere University Library. Downloaded on July 20,2022 at 10:36:13 UTC from IEEE Xplore. Restrictions apply.

Partitioning Microservices: A Domain Engineering Approach SEIA ’18, May 27–28, 2018, Gothenburg, Sweden

The general structure of DDD presented in Figure 1 shows that

the main goal of DDD is to design a domain model which represents

the solution in all aspects. This encompasses all of the domain

knowledge and the relationships of the different objects. A domain

is composed of different subdomains in the given bounded context,

with the bounded context applicable from ubiquitous language.

However, it is not always obvious that each subdomain has only

one bounded context. As Figure 1 shows, different bounded contexts

can constitute a subdomain.

Figure 1: Domain Driven Design overview

There are patterns of domain driven design that can be used

to size a microservice including; identifying bounded contexts,

aggregate dependency injection, making concepts explicit, applying

object oriented strategies, ubiquitous language, and separation of

entities and value [6].

Context map and bounded contexts The context map is the

tool used to make boundaries between domains explicit. A bounded

context encapsulates the details of a single domain. A well designed

bounded context in a context map will end up being a microservice.

Hence, in microservice architecture, services should be organized

around business capability by organizing cross-functional team(s)

of experts to explicitly define the boundary of the domain. Also

microservices should be autonomous and have the capability of

making changes without affecting other services. In expecting this,

the microservice should fit only one bounded context. This also

implies the implementation of single database per service. If there is

a need to scale up microservices to a high level, a bounded context

may contain multiple microservices, but a microservice that is

cross-cutting different bounded contexts should be avoided [11].

Aggregate The aggregate is a logical boundary for things that

can change in a business transaction of a given context. To ensure

the consistency among parallel operation changes, aggregates play

a big role to coordinate activities that are considered as one unit in

regard to change [12]. Since aggregates have a root, which is the

reference of objects that compose the aggregate, it is advisable to

choose the aggregate root as entity and other aggregate objects as

value objects, because any change in the objects will not affect the

integrity of the aggregate. Also the creation of aggregates should

be atomic.

Repository In DDD, a repository has the responsibility of stor-

ing and retrieving data. The repository can be in any format: SQL

server, Oracle, XML file, and so on [15]. The main goal and priority

of the DDD approach is to design a domain model form, domain

objects, identify objects relationship, their interaction, and find

out if the business goals are achieved. This creates a persistence

ignorance of a database in the application, which will make an

application free from coupling with any data store [15].

ApplyingObjectOrientedObject Oriented Programming (OOP)

is suitable for implementing the domain model of DDD. OOP encap-

sulates conceptual connections between objects and classes, then

makes mapping between the domain and code very easy [6]. In OOP

UI, database, and other support code often gets written directly

into the business objects which easily facilitate the implementation

of bounded context to the extent of independent deployment of

bounded context. Since microservice architecture has decentralized

governance [20], microservices that compose a system can be built

using different tools. This can be done using tools that follow OOP,

because procedural languages are characterized by functional calls,

which are burdensome in implementing the autonomy of bounded

context.

Ubiquitous language This is a communication language ex-

pressed in speech, diagram, and writing by the domain expert,

system architect and system developer. Its rationale is to share

knowledge and straighten the model of the system [6]. Microser-

vices that constitute a system need ubiquitous language to ensure

that they are in line with the business perspective, by implementing

the systems that use the same terms and same operations as the

business do.

Separation of entities and value type Entities are necessary

objects of DDD, but not all objects should be entities because this

will cause performance problems, due to the increase of instances

that have to be created for each object. Value objects are an alter-

native for those objects used to describe the domain aspect where

identity is not necessary. Value objects have a significance in de-

signing objects because these can be immutable and shared among

objects.

Obtaining the right size of microservice that obeys all rules, can

be achieved by using the DDD standard. DDD provides the infor-

mation needed by a microservice, a way to identify the services

needed and a description of the workflows for the identified services.

This will aid in determining the appropriate size of a microservice.

However, there are other factors that could influence the size of

microservices, notably the way a microservice will interact with

other microservices, known as the messaging route (AMQP, Kafka),

using either the synchronous or asynchronous mechanisms; the

way to publish and connect to event choice of API gateway proto-

col (REST/http); and the way to interact with the database. DDD

approach offers the ability to separate a system into loosely coupled

parts that handle a well known domain activity. Since microservices

should be small, separately deployed units that are distributed in

nature [24], there is no common size for all services, and the right

size cannot be measured in number of lines of code. However, the

size of a microservice should be in line with what the system should

deliver [31], by properly separating bounded contexts to fit in the

45

Authorized licensed use limited to: Makerere University Library. Downloaded on July 20,2022 at 10:36:13 UTC from IEEE Xplore. Restrictions apply.

SEIA ’18, May 27–28, 2018, Gothenburg, Sweden Munezero et al.

Figure 2: Microservice partitioning procedure overview

corresponding domain functionality.

3 DDD PROCEDURE OF PARTITIONING INTO

MICROSERVICES

Based on the DDD pattern described in section 2.2, and an explo-

ration study of research on how to design a good microservice, we

take the steps illustrated in the figure 2 to design the right size:

• Having a well defined domain, start by indicating all the

responsibilities of the system. Using ubiquitous language,

define what the system does, and the different domain func-

tionalities it should implement. Note that if the domain is

wide it is advisable to split it into sub-domains.

• Find the boundary of each responsibility and make it as a

business capability. Each business capability is a microser-

vice. In the process of setting the boundary, the focus should

be on the relationships among different microservices.

• For each domain responsibility, break down coarse grained

responsibility.

• Define the microservice components, then the objects of a

component, design the objects of an aggregate to be included

in one component. Avoid aggregates whose objects are cross-

cutting different components or microservices. Design entity

objects to be aggregate roots and value objects to be aggre-

gates. If it is required that an object is to be used in different

components or microservices, this should be a value object.

• Analyze relationships of the microservice, which must be

as independent as possible. In case there is a distributed

transaction across multiple microservices, this design could

be avoided by setting the boundary and minimizing cross-

cutting transactions. Moreover, if one microservice is respon-

sible for more than one responsibility, its components have

to be reviewed to form more than one microservice.

• Design a microservice that has as minimum operation as

possible.

The partitioning procedure of sizing microservices explained is the

first step to designing a successful microservice. There is however

the need to still design techniques on the messaging format, pro-

tection of the service, API gateway, monitoring, repository and

different ways to find the service.

The figure 2 illustrates the domain driven microservice partition-

ing procedure which begins with people involved in the system.

These include the system developers, stakeholders and domain ex-

perts who agree on a ubiquitous language, which sets the system

responsibility. System responsibility composes a domain according

to the objectives and capabilities of the system. The boundary of

the domain is then set. Coarse system capability is broken down

into different components in respect to its context map, in the same

context map study well how components are going to interact with

each other in loose coupling possible. With context map that can

store data in its own database, play a big role in establishing good

design of a microservice. However, if the partitioning of a microser-

vice results into more coupling architecture, it is revisable to set

again relationship and set the context map again. In other case it

means that microservices are not a good choice for all user cases,

in some scenarios, other software architecture designs may result

in better performance than microservices [32, 34].

46

Authorized licensed use limited to: Makerere University Library. Downloaded on July 20,2022 at 10:36:13 UTC from IEEE Xplore. Restrictions apply.

Partitioning Microservices: A Domain Engineering Approach SEIA ’18, May 27–28, 2018, Gothenburg, Sweden

4 ILLUSTRATION

We apply the strategies of section 3 to demonstrate how to possi-

bly design a microservice for a fresh domain. We exemplify this

using the weather information domain. In this section, we illustrate

how to partition the weather information system into appropriate

microservices. We begin by defining the weather domain so as to

provide a vocabulary (ubiquitous language) for the domain, and

then apply the procedure of partitioning microservices.

Weather is one of the factors that affects the livelihood of people

everywhere in one way or another. Accessibility to reliable weather

information is therefore vital for informed decision-making in vari-

ous socio-economic sectors such as agriculture, disaster manage-

ment, aviation, fishing, energy, mining, construction, defense, water

resources and health, among others [1]. However, access to reliable

and timely weather information remains a challenge for the African

context, particularly considering Uganda [18]. Weather services

are therefore critical for the activities in these sectors to support

sector-related activities of stakeholders.

For instance, stakeholders from the agricultural sector are farm-

ers; either crop production farmers, livestock farmers or fishermen.

These farmers are interested in making decisions that will boost and

maximize their productivity. Considering crop production farmers,

these decisions will range from when to prepare land for tilling,

when to plant, what type of crop to plant, depending on the weather

season, all the way to harvesting and post-harvest matters such as

storage, and market pricing, among others. For this type of farmer,

therefore, weather information that is readily accessible and timely

is a crucial service.

We elicited this domain knowledge by interaction with domain

experts. Our domain experts included the weather information ser-

vice providers, and the weather information consuming stakehold-

ers, who were farmers in Uganda. The interaction was conducted

in the form of guided questionnaires with the service providers,

and focus group discussion sessions with the farmers. The results

from the interviews were transcribed as narratives.

4.1 Weather Domain

Take the weather domain to be a well-defined domain, with weather

described as the present conditions of the elements that compose

the climate, and their variations over short periods [19]. Weather

is characterized by parameters such as temperature, humidity, rain,

wind direction and speed, atmospheric pressure, etc [18].

To achieve the objective of access to reliable weather information

by stakeholders, weather information has to be collected, archived,

processed and disseminated to relevant stakeholders. Weather in-

formation refers to weather data that characterizes the weather

(weather parameters) or weather forecast (a prediction of the state

of the atmosphere for a given location and time or time interval). A

weather information system will therefore be necessary to provide

weather information that is vital for informed decision-making by

various stakeholders. This information is necessary for increased

productivity (in the agricultural, energy, water resources and con-

struction sectors) and safety (in the aviation, disaster management,

fishing, health, mining, and defense sectors) [28].

The weather domain is a wide domain, and therefore, to achieve

the objective of improving weather information management, the

domain is split into four main sub-domains. Collectively the func-

tionality in each sub-domain will contribute to the overall objec-

tive of improving weather information management. We identify

the weather data collection; weather data archiving; weather fore-

casting/prediction; and weather information dissemination sub-

domains, as shown in Figure 3. The weather system should im-

plement this functionality. We are particularly interested in the

weather information dissemination sub-domain, which we describe

further.

Figure 3: Weather Domain and Sub-domains

Weather Information Dissemination After weather data is

processed and a forecast produced, theweather forecast information

is disseminated to relevant stakeholders. An efficient dissemination

system should allow easy and timely access of weather information.

This information is to enable stakeholders make informed deci-

sions for improved productivity and safety related to their sector

activities.

The sub-domains in Figure 3 describe the boundaries and there-

fore the business capability of each aspect of the weather informa-

tion management system. Each sub-domain/business capability is

focused on doing one thing. Taking the business capability as a

microservice, we can clearly see the relationship between the differ-

ent microservices. Weather data is firstly collected, then archived,

then processed and finally disseminated. Decomposing the weather

domain into sub-domains adheres with the principles of componen-

tization, collaboration, reliable connections and controls, which are

key to successful microservices [14]. This componentization also

allows for making of rapid and independent functional changes

between the sub-domains. Each component can be maintained and

scaled independently.

4.2 Partitioning into Microservice Components

We have generally described the weather information dissemina-

tion domain as the domain on which we apply the procedure of

partitioning into microservices. The weather information dissemi-

nation system’s main functionality is to provide timely and easy

47

Authorized licensed use limited to: Makerere University Library. Downloaded on July 20,2022 at 10:36:13 UTC from IEEE Xplore. Restrictions apply.

SEIA ’18, May 27–28, 2018, Gothenburg, Sweden Munezero et al.

access of weather information to stakeholders to enhance their

decision-making process.

The weather forecast information prepared by the weather in-

formation service provider is disseminated to stakeholders using

various channels including mass media (such as TV and radio), print

media (such as newspapers andmagazines), via Internet (email, web-

sites, social media), word-of-mouth, among others. As a part of this

domain, we identify and define the core concepts that should be

implemented as part of the domain functionality. These concepts

are categorized as entities which may have values, properties and

types, or functions over entities or events and behaviors of the

entities [8]. We abstract these concepts as a result of interaction

with domain experts. Concepts in this case represent knowledge

about objects with certain properties, and characterize a domain

[9]. Through brainstorming, sketching rough descriptions of the

domain and informal analysis of the transactions of the domain,

we abstract the following entities and their vocabulary.

Weather ServiceAweather service is a composition of different

weather information.

Weather Information This can either be raw, processed or

predictive. For instance, weather information in Uganda, may be

in the form of alerts (warnings), dekadals (ten-day forecast) or

seasonal (three months forecast).

Stakeholder This includes both the weather service provider

and weather information consumer. Examples of consumers include

the stakeholders from the different sectors.

Dissemination ChannelMedium through which weather in-

formation is conveyed to various stakeholders. Main channels are

mass media, Internet, mobile telephones, Non-Governmental Or-

ganizations (NGOs) and government ministries, departments and

agencies, among others.

Decision Refers to what the action the stakeholder will make

on processing provided weather information. Considering crop

production farmers, possible decisions may be when to plant, what

type of crop to plant, when to weed, or harvest.

Format Form of presentation of weather information for dis-

semination. Possible formats are audio, text, graphic, animation.

Aspects include language to be used.

The unique business activity of this component is weather in-

formation dissemination as shown in Figure 4. The objects are

organized around this business capability, each representing a pos-

sible boundary. Each of them presents a business capability and can

be implemented as a microservice. The microservices are dependent

on a database for their information. The services have the ability to

register themselves, record their configuration and be orchestrated

in the domain’s transactions.

4.3 Relationships and Operations

We identify some relationships among the objects in the microser-

vices (Figure 4) and use natural language to represent them. They

include:

• Weather Information forms weather services

• Weather Information informs decisions

• Weather Information has format

• Weather Services support stakeholder

Figure 4:Weather InformationDisseminationMicroservices

• Stakeholder provides/consumesweather information (depend-

ing on if they are providing weather information or consum-

ing the weather information)

• Stakeholder makes decision

• Dissemination channel conveys weather information

All of the identified relationships are independent and particular

to the weather dissemination microservice. They demonstrate the

interactions between the different entities. The operation within

this microservice is minimal. Examples of operations include:

• Weather service = Weather Information x Stakeholder x Dis-

semination Channel x Format x Location

A weather service is structured by taking weather infor-

mation for a particular stakeholder, this information being

provided through a specific channel and in a specified for-

mat. The weather information can be specific or general

weather parameters. Language is a part of this information,

the information may be tailored to a specific language

• Dissemination Channel = Stakeholder x Format

the dissemination channel can be appropriately chosen by

considering the stakeholder, and the format of message to

be relayed

• Gregorian-Time-Point = Year xMonth xDay xHour x {00,15,30,45}

for 15 min intervals

Note: The notation ’x’ used for the operations implies a combination

of an element (as a Cartesian product) from each set.

DDD breaks down a domain into a series of bounded contexts,

each of which, if autonomous constitutes a microservice. For each

of the identified services, a single database can be implemented.

5 CONCLUSION

In this paper, we provide a method for partitioning microservices

following the DDD pattern. In particular, we have demonstrated

48

Authorized licensed use limited to: Makerere University Library. Downloaded on July 20,2022 at 10:36:13 UTC from IEEE Xplore. Restrictions apply.

Partitioning Microservices: A Domain Engineering Approach SEIA ’18, May 27–28, 2018, Gothenburg, Sweden

this method on the weather information dissemination domain.

The domain is decomposed into sub-domains and objects to make

microservices that perform one functionality at a time. Sizing mi-

croservices in this way allows for the creation of small and inde-

pendent components, which have few operations that can be easily

altered if possible. We posit that the system designed in this way is

able to make rapid functional changes, which domain engineering

supports, and are crucial for microservices. DDD breaks down a

domain into a series of bounded contexts, each of which, if au-

tonomous, constitutes a microservice. For each of the identified

services, a single database can be implemented.

As a result of the weather information dissemination service, the

stakeholder is able to receive weather information that enhances

their decision-making. The stakeholder can choose to receive raw,

processed or predictive weather information. On the one mode, the

stakeholder initiates a request for weather information through a

medium such as a mobile phone, or Internet platform (web-portal,

social media) and receives a message entailing their interested in-

formation. In this mode, the weather information is tailored to suit

the requirements of the stakeholder, creating a demand-driven ser-

vice. In the second mode, the stakeholder receives general weather

information that is provided by the weather service providers. This

information is pushed to the stakeholder over mass media (TV, ra-

dio, print media). This mode supports the PUSH mechanism where

the stakeholder simply receives predetermined weather informa-

tion. With the information, the stakeholder is then able to make an

informed decision on how to proceed to carry out their economic

activity.

Next steps are to implement the identified components as mi-

croservices, focusing on loose coupling to enable changes to be

made independently, interaction with other services and allowing

easy scale up through a combination of multiple microservices.

Future work will entail an evaluation of the approach to provide

validation.

REFERENCES
[1] [n. d.]. WIMEA-ICT. http://wimea.mak.ac.ug/. ([n. d.]). Accessed: 2017-04-15.
[2] Martin L Abbott and Michael T Fisher. 2009. The art of scalability: Scalable

web architecture, processes, and organizations for the modern enterprise. Pearson
Education.

[3] Mohsen Ahmadvand and Amjad Ibrahim. 2016. Requirements Reconciliation for
Scalable and Secure Microservice (De) composition. In IEEE 24th International
Requirements Engineering Conference Workshop. 6. https://doi.org/10.1109/REW.
2016.14

[4] Ali Nour Evans Roger Alshuqayran Nuha. 2016. A Systematic Mapping Study in
Microservice Architecture. IEEE 9th International conference on Service Oriented
Computing and Application (2016), 8. https://doi.org/10.1109/SOCA.2016.15

[5] Tugrul Asik. 2017. Policy Enforcement upon Software Based on Microservice
Architecture. IEEE computer society (2017), 283–287.

[6] Abel Avram. 2006. Domain-Driven Design Quickly (first edit ed.). InfoQ.
[7] Rami bahsoon Hassan Sara, Ali Nour. 2017. Microservice Ambients : An Archi-

tectural Meta-modelling Approach for Microservice Granularity. In 2017 IEEE
International Conference on Software Architecture. 1–10. https://doi.org/10.1109/
ICSA.2017.32

[8] Dines Bjørner. 2006. Software Engineering 3: Domains, requirements, and software
design. Springer Science & Business Media.

[9] Krzysztof Czarnecki, Ulrich W Eisenecker, G Goos, J Hartmanis, and J van
Leeuwen. 2000. Generative programming. Edited by G. Goos, J. Hartmanis,
and J. van Leeuwen 15 (2000).

[10] Nguyen Viet-ha Duc-Minh Dang. 2016. Domain-Driven Design Patterns : A
Metadata-Based Approach. IEEE International Conference on Computing and
Communication Technology, Research Innovation, and Vision for the Future 102
(2016), 247–252.

[11] Eberhard Wolff. 2016. Microservices: Flexible Software Architecture (1st editio ed.).
InformIT. http://www.informit.com/articles/article.aspx?p=2738465

[12] Eric Evans. 2003. Domain-Driven Design (2nd editio ed.). Vol. 7873. Addison
Wesley.

[13] Martin Fowler and James Lewis. 2014. Microservices. Viittattu 28 (2014), 2015.
[14] Owen Garrett. [n. d.]. Three keys to successful microservices.

http://www.infoworld.com/article/2936148/application-development/
three-keys-to-successful-microservices.html. ([n. d.]).

[15] Mahmud Hasan. [n. d.]. Domain Driven Design - Clear Your Concepts Before
You Start - CodeProject. ([n. d.]). https://www.codeproject.com/articles/339725/
domain-driven-design-clear-your-concepts-before-yo Accessed: 2017-07-15.

[16] Peter Jarman. 2015. Microservices âĂŞ A New Application Paradigm. Infosys
(2015).

[17] Ulrich Kalex. [n. d.]. Business Capability Management: Your Key to the Business
Board Room. http://www.opengroup.org/johannesburg2011/Ulrich%20Kalex%
20-%20Business%20Capability%20Management.pdf. ([n. d.]).

[18] B Kanagwa, D Tuheirwe-Mukasa, and K Muwembe. 2015. The Need for An
Integrated Effective Weather Dissemination System for Uganda. In Proceedings
of the 2015 International Conference on Frontiers in Education: Computer Science
and Computer Engineering. CSREA Press, 330.

[19] Simone Leao. 2014. Mapping 100 Years of Thornthwaite Moisture Index: Impact
of Climate Change in Victoria, Australia. Geographical Research 52, 3 (2014),
309–327.

[20] Martin Fowler Lewis James. 2014. Microservices. (2014). file:///G:/Newfolder/
micro2/webfile/Microservices.html

[21] Eisele Markus. 2016. Developing Reactive Microservices (1st editio ed.). O’Reilly
Media Inc.

[22] Dmitry Namiot and Manfred Sneps-Sneppe. 2014. On micro-services architecture.
International Journal of Open Information Technologies 2, 9 (2014).

[23] Sam Newman. 2015. Building Microservices. " O’Reilly Media, Inc.".
[24] Sam Newman. 2015. Microservices. In Building Microservices. O’Reilly, 1–11.
[25] Srikanta Patanjali, Benjamin Truninger, Piyush Harsh, and Thomas Michael

Bohnert. 2015. CYCLOPS : A Micro Service based approach for dynamic Rating
, Charging & Billing for cloud. (2015). https://doi.org/10.1109/ConTEL.2015.
7231226

[26] Roland Petrasch. 2017. Model-based Engineering for Microservice Architectures
using Enterprise Integration Patterns for inter-service Communication. IEEE
(2017), 5–8.

[27] Florian Rademacher, Sabine Sachweh, and Z Albert. 2017. Differences Between
Model-driven Development of Service-oriented and Microservice Architecture.
In IEEE international conference on Software Architecture Workshop. https://doi.
org/10.1109/ICSAW.2017.32

[28] Joachim Reuder and Julianne Sansa-Otim. 2013. WIMEA-ICT: ImprovingWeather
Information Management in East Africa for effective service provision through
the application of suitable ICTs. (November 2013).

[29] Mark Richards. 2015. Software Architecture Patterns (first edit ed.). O’Reilly Media
Inc.

[30] Gerald Schermann, Jürgen Cito, and Philipp Leitner. 2015. All the Services Large
and Micro: Revisiting Industrial Practice in Services Computing. In International
Conference on Service-Oriented Computing. Springer, 36–47.

[31] Carlos M Ferreira Shahir Daya Nguyen Van Duy, Kameswara Eati. 2015. Mi-
croservices from Theory to Practice Creating Applications in IBM Bluemix Using
the Microservices Approach (first edit ed.). International Technical Support Orga-
nization. 170 pages.

[32] Rion Dooley Stubbs Joe, Walter Moreira. 2015. Distributed Systems of Microser-
vices Using Docker and Serfnode. 7th International Workshop on Science Gateways
(2015). https://doi.org/10.1109/IWSG.2015.16

[33] Johannes Thönes. 2015. Microservices. IEEE Software 32, 1 (2015), 116–116.
[34] Mario Villamizar, Oscar Garces, Lina Ochoa, Harold Castro, Lorena Salamanca,

Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zam-
brano, and Mery Lang. 2016. Infrastructure Cost Comparison of Running Web
Applications in the Cloud Using AWS Lambda and Monolithic and Microser-
vice Architectures. In Proceedings - 2016 16th IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing, CCGrid 2016. 179–182. https:
//doi.org/10.1109/CCGrid.2016.37

[35] Eberhard Wolff. [n. d.]. What Are Microservices _ 3. ([n. d.]). http://www.
informit.com/articles/article.aspx?p=2738465 Accessed: 2017-06-15.

49

Authorized licensed use limited to: Makerere University Library. Downloaded on July 20,2022 at 10:36:13 UTC from IEEE Xplore. Restrictions apply.

